- A)(1.5 puntos) Indique el diagrama de estados del circuito, especificando claramente cuál es el significado de cada uno de los estados.
- B) (0.5 puntos) Indique cómo codifica los estados y obtenga la tabla de transición de estados correspondiente.
- C) (1 punto) Suponiendo que sólo dispone de biestables tipo D para el diseño del circuito, calcular las funciones de excitación de los biestables.
- D)(1 punto) Implemente el circuito con biestables tipo D y puertas lógicas NAND y NOT únicamente.

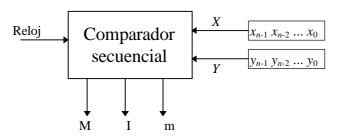


Figura 96-2-1 Diagrama de bloques del comparador

Solución

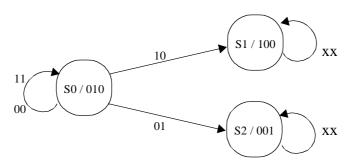


Figura 96-2-2 Diagrama de estados del circuito

Un posible diagrama de transición de estados para el comparador secuecial

propuesto es el de la Figura 96-2-2. Los símbolos utilizados en este diagrama son los mostrados en la Figura 96-2-3 donde: S_i es el estado, x_iy_i son los bits de la entrada, y MIm son los tres bits de la salida.

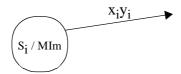


Figura 96-2-3 Significado de los símbolos utilizados en el diagrama de estados

La explicación del diagrama de estados de la Figura 96-2-2 es la siguiente. Al comparar dos números binarios X e Y, comenzando por sus bits de más peso, en cuanto lleguen al comparador dos bits distintos ya es posible indicar cuál de ellos es menor y cuál es mayor, independientemente del valor de los siguientes bits. Por ejemplo:

$$\begin{array}{l} X = 0010011^{1}11010101000 \\ Y = 001001011010101111 \end{array}$$

a partir del bit marcado ya se sabe que X>Y.

El sistema parte de un estado S0 que significa que los dos números a comparar son iguales. Si los bits de igual peso de X y de Y que van llegando son iguales, el sistema no cambia de estado, pero en el instante en que lleguen dos distintos, pasa al estado S1 si $x_i > y_i$ o al estado S2 si $x_i < y_i$. A partir de ese momento, independientemente del valores de las siguientes entradas al comparador, el sistema no cambia de estado. Luego el significado de los estados es el siguiente:

- S0 X = Y
- S1 X > Y
- S2 X < Y

A partir del diagrama de estados de la Figura 96-2-2 se obtiene directamente la tabla de estados mostrada en la Tabla 96-2-2.

Estado presente	00	Entrad 01	as x _i y _i 10	11	Salida M I m
S0 (igual)	S0	S2	S 1	S0	010
S1 (mayor)	S 1	S 1	S 1	S 1	100
S2 (menor)	S2	S2	S2	S2	0 0 1
	Próximo estado				

Tabla 96-2-2 Tabla de estados del comparador secuencial

B) Una posible codificación de los estados es la mostrada en la Tabla 96-2-3.

Estado	Q_1Q_0		
S0 (igual)	0 0		
S1 (mayor)	0 1		
S2 (menor)	10		

Tabla 96-2-3 Codificación de los estados

A partir de esta codificación y de la Tabla 96-2-2 se obtiene directamente la tabla de transición de estados (Tabla 96-2-4).

Estado pres. Q_1Q_0	00	Entrad 01	as x _i y _i 10	11	Salida M I m
0 0	0 0	1 0	0 1	0 0	010
0 1	0 1	0 1	0 1	0 1	100
10	1 0	10	10	1 0	0 0 1
	Próximo estado				

Tabla 96-2-4 Tabla de transición de estados y salida del comparador

C) Teniendo en cuenta la función de excitación de un elemento de memoria tipo D:

$$D = Q(t+1)$$

y la tabla de transición de estados, se deducen las expresiones de las entradas D_1 y D_0 a los dos elementos de memoria necesarios para almacenar el estado del comparador (ver Figura 96-2-4).

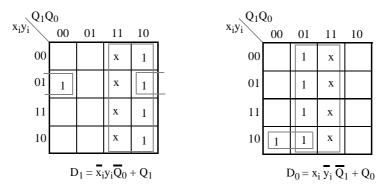


Figura 96-2-4 Funciones de excitación de los biestables del comparador

D) Para implementar el circuito utilizando bistables tipo D y puertas lógicas NAND y NOT únicamente, no sirven directamente las funciones de excitación obtenidas en el apartado anterior, pero negando dos veces cada una

de ellas se obtienen las expresiones buscadas.

$$\begin{array}{lll} D_1 &=& \overline{x}_i y_i \overline{Q}_0 + Q_1 &=& \overline{\overline{x}_i y_i \overline{Q}_0 + Q_1} &=& \overline{\overline{x}_i y_i \overline{Q}_0} \cdot \overline{Q}_1 \\ \\ D_0 &=& x_i \overline{y}_i \overline{Q}_1 + Q_0 &=& \overline{x_i \overline{y}_i \overline{Q}_1 + Q_0} &=& \overline{x_i \overline{y}_i \overline{Q}_1} \cdot \overline{Q}_0 \end{array}$$

Finalmente sólo falta calcular las expresiones lógicas de las tres salidas en función del estado, para ello utilizamos la Tabla 96-2-5.

$Q_1 Q_0$	M I m
0 0	010
0 1	100
10	0 0 1
11	XXX

Tabla 96-2-5 Valor de la salida en función del estado

Las expresiones lógicas para la salida que se obtienen de la Tabla 96-2-5 son:

$$\begin{aligned} \mathbf{M} &= \mathbf{Q}_0 \\ \mathbf{I} &= \overline{\mathbf{Q}}_1 \overline{\mathbf{Q}}_0 = \overline{\overline{\overline{\mathbf{Q}}_1 \overline{\mathbf{Q}}_0}} \\ \mathbf{m} &= \mathbf{Q}_1 \end{aligned}$$

Utilizando las funciones de excitación de los elementos de memoria tipo D y las expresiones lógicas de la salida en función del estados, el circuito secuencial del comparador que se obtiene es el que se muestra en la Figura

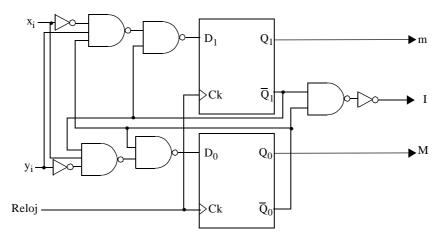


Figura 96-2-5 Circuito secuencial del comparador