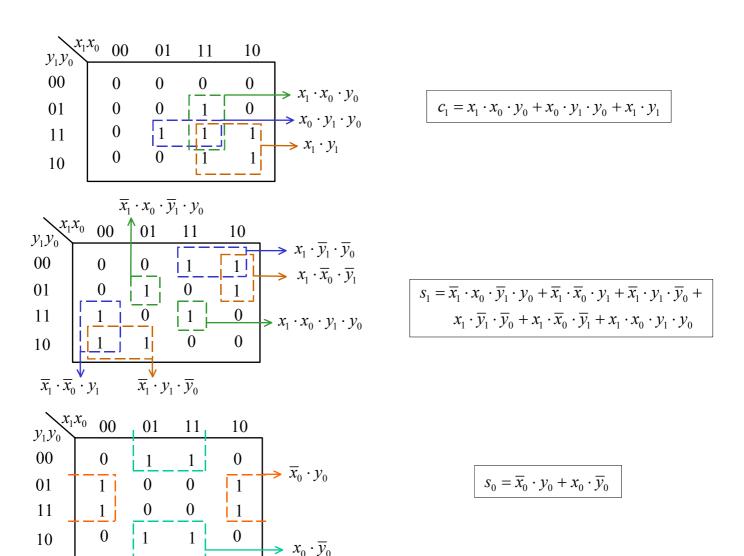
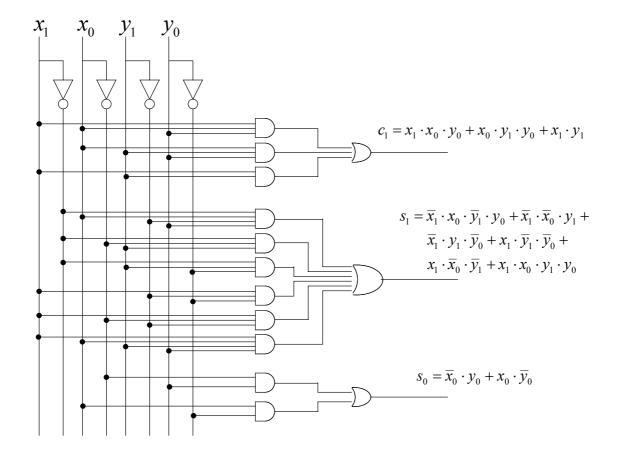

Problema 4.44

En la Fig. 1 se muestra el diagrama de bloques de un sumador binario de dos números de 2 bits. Las entradas al sumador son los dos bits de cada sumando $(X=x_1x_0, Y=y_1y_0)$. Las salidas son los dos bits de suma $(s=s_1s_0)$ y el bit de arrastre (c_1) .

- A) (0.75 puntos) Obtenga la tabla de la verdad de las salidas (c_1 , s_1 , s_0) del sumador de la Fig. 1 en función de las entradas (y_1 , y_0 , x_1 , x_0).
- B) (1 punto) Obtenga las funciones lógicas simplificadas de las tres salidas (c₁, s₁, s₀) del sumador de la Fig. 1 en función de las entradas (y₁, y₀, x₁, x₀). Emplee para ello mapas de Karnaugh.
- C) (0.75 puntos) A partir de las funciones lógicas calculadas en el apartado anterior, realizar el sumador binario de 2 bits mostrado en la Fig. 1 mediante un circuito combinacional de dos niveles (AND-OR).
- D) (1.5 puntos) Si al sumador binario de la Fig. 1 se le añade una nueva entrada, "bit de arrastre de la etapa anterior" (c₋₁), se obtiene el sumador representado en la Fig. 2. Empleando módulos sumadores como el mostrado en la Fig.2, multiplexores y puertas lógicas, diseñe una ALU aritmética de 4 bits que realice las cinco operaciones siguientes sobre dos números A y B de 4 bits: suma (Z=A+B), resta (Z=A-B), transfiere A (Z=A), incrementa A en 1 (Z=A+1) y decrementa A en 1 (Z=A-1).

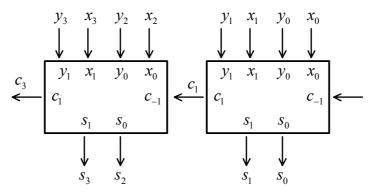

Solución

Los apartados A), B) y C) son similares a las cuestiones planteadas en los problemas 4-1, 4-2 y 4-3, en los que se pide obtener la tabla de la verdad, la función lógica y diseñar el circuito AND-OR de diferentes circuitos sumadores y restadores. El apartado D) es análogo al problema 4-30.

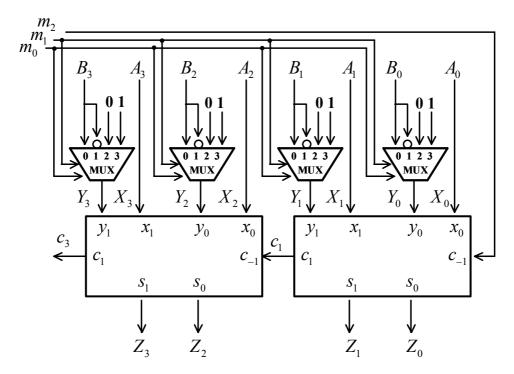

A) Obtenga la tabla de la verdad de las salidas (c_1, s_1, s_0) del sumador de la Fig. 1 en función de las entradas (y_1, y_0, x_1, x_0) .

y_1	\mathbf{y}_0	\mathbf{x}_1	\mathbf{x}_0	\mathbf{c}_1	s_1	s_0
0	0	0	0	0	0	0
0	0	0	1	0	0	1
0	0	1	0	0	1	0
0	0	1	1	0	1	1
0	1	0	0	0	0	1
0	1	0	1	0	1	0
0	1	1	0	0	1	1
0	1	1	1	1	0	0
1	0	0	0	0	1	0
1	0	0	1	0	1	1
1	0	1	0	1	0	0
1	0	1	1	1	0	1
1	1	0	0	0	1	1
1	1	0	1	1	0	0
1	1	1	0	1	0	1
1	1	1	1	1	1	0

B) Obtenga las funciones lógicas simplificadas de las tres salidas (c_1, s_1, s_0) del sumador de la Fig. 1 en función de las entradas (y_1, y_0, x_1, x_0) . Emplee para ello mapas de Karnaugh.



C) A partir de las funciones lógicas calculadas en el apartado anterior, realizar el sumador binario de 2 bits mostrado en la Fig. 1 mediante un circuito combinacional de dos niveles (AND-OR).



D) Si al sumador binario de la Fig. 1 se le añade una nueva entrada, "bit de arrastre de la etapa anterior" (c₋₁), se obtiene el sumador representado en la Fig. 2. Empleando módulos sumadores como el mostrado en la Fig.2, multiplexores y puertas lógicas, diseñe una ALU aritmética de 4 bits que realice las cinco operaciones siguientes sobre dos números A y B de 4 bits: suma (Z=A+B), resta (Z=A-B), transfiere A (Z=A), incrementa A en 1 (Z=A+1) y decrementa A en 1 (Z=A-1).

En el apartado 4.1.4 del texto de teoría se explica cómo realizar la conexión de circuitos sumadores con bit de acarreo y bit de arrastre de la etapa anterior, con el fin de obtener sumadores de un mayor número de bits. Puede conseguirse un sumador de 4 bits, conectando dos sumadores de 2 bits como el de la Fig. 2, de la forma siguiente:

En el problema 4-30 se explica cómo realizar una ALU, empleando un sumador de 4 bits y multiplexores, que proporciona la funcionalidad pedida en el enunciado del apartado D) del examen. El diseño se realiza de la forma siguiente:

La ALU tiene tres señales de control: m_0 , m_1 y m_2 . La selección de las entradas de datos de los multiplexores se hace mediante m_0 y m_1 . La entrada m_2 se conecta al arrastre de entrada del primer sumador. Las operaciones aritméticas pedidas en el enunciado pueden generarse de la manera siguiente:

Señales de control			Entradas	Salida	
$\mathbf{m_2}$	\mathbf{m}_1	\mathbf{m}_0	X	Y	Z
0	0	0	A	В	A+B
1	0	1	A	$\overline{\mathrm{B}}$	$A+\overline{B}+1=A-B$
0	1	0	A	0000	A
1	1	0	A	0000	A+1
0	1	1	A	1111	A-1