

Exercise 9.1

The project no longer compiles. The print method tries to access the private fields of
the Item class, which are not accessible from subclasses. This can be corrected by
creating accessor methods in Item and calling these from the subclasses.

If we try to compile after these modifications it still does not work. This time it is in
the compilation of the Database class that fails, because it is trying to invoke the
print() method on a variable of type Item. But Item has no longer declared a method
called print() and hence it fails.

Exercise 9.2

The print method in the Item class is never called. If the object is a CD the print
method in the CD class is called. If the object is a DVD the print method in the DVD
class is called. This is because the dynamic types of the items are used.

Exercise 9.3

Yes, it behaves as expected by first calling the print method from the Item class and
then calling the print method in the actual class (dynamic type).

One problem is that you can't enforce the call to the super class' print method. This
means that if you want to create new subclasses you must remember to call
super.print().

Another problem is that you can't modify the order of which the different things are
printed out. This is discussed further in exercise 9.8.

Exercise 9.4

Add this line to the beginning of the print() method in the DVD class:

 System.out.print("DVD: ");

And this line in the beginning of print() method in the CD class:

 System.out.print("CD: ");

Exercise 9.5

The toString() method can be found on the class Object. It has no parameters and the
return type is String.

Exercise 9.7

The print() method in the CD class:

 public void print()
 {

 System.out.print("CD: " + artist + ": ");
 super.print();
 System.out.println(" tracks: " + numberOfTracks);
 }

The print() method in the Item class:

 public void print()
 {
 System.out.print(title);
 if(getOwn()) {
 System.out.println("*");
 }
 else {
 System.out.println();
 }
 System.out.println(" " + playingTime + " minutes");
 System.out.println(" " + comment);
 }

Exercise 9.8

Give all the fields in the Item class protected accessors.

Then modify the method in the CD class to look like this:

 public void print()
 {
 System.out.print("CD: " + artist + ": ");
 System.out.print(getTitle());
 if(getOwn()) {
 System.out.println("*");
 }
 else {
 System.out.println();
 }
 System.out.print(" " numberOfTracks + " tracks, ");
 System.out.println(" " + getPlayingTime() + " minutes");
 System.out.println(" " + getComment());
 }

Exercise 9.9

Download: 09-09-zuul-with-transporter.zip

Exercise 9.10

To implement a Monster and a Player class in the Zuul project it would probably
make sense to have a common superclass (Character) that contains the common
behavior of the two classes.

Exercise 9.11

It depends... you could argue for all of the inheritance relations. Which one to choose
depends on the current implementation and (if you know) which features you plan to

implement in the near future.

If an Item is a superclass of a Character, it would allow you to treat all Characters as
Items. This means that a Character could pick up another Character which might
make sense in some scenarios.

If Character is a superclass of Item, you can treat all Items as Characters. If we define
Characters as something that can move around, this would allow for items to move
around if that is desired.

If the two classes are siblings and have a common superclass (Thing?), you could do a
combination of the above solutions. This could allow a Character to pick up Things
(which means you can pick up both Items and Characters) and it could also allow for
all Things to move around (again, this also applies to Item and Character).

If you don't consider Item and Character to have anything in common you could have
no inheritance relations between Item and Character at all.

Exercise 9.12

Because type-checking is done on the static type of dev (which is Device) the method
getName() must be defined in Device.

Exercise 9.13

To actually execute a method dynamic method lookup is used. This means that it is
the method in the Printer class that will be called, because the dynamic type of dev is
Printer.

Exercise 9.14

Yes, it will compile.

The toString() is implemented in the class Object from the Java library. The Object
class is always a superclass of all other classes. Hence, when you execute it is the
toString as defined in the class Object that will be called and the return value assigned
to the String s.

Exercise 9.15

Yes, this will compile.

The System.out.println() method can take an Object as argument and as argued in
9.14 Student is a subclass of Object.

Exercise 9.16

Yes, it compiles.

It prints out all the names of the students in the list.

It will run through all the items in the list and call the method System.out.println(st).
This method invokes the toString() method of the object - which, because of dynamic
method lookup, will call the toString() method in the Student class.

Exercise 9.17

D must be a subclass of T

T x = new D();

